Oriented matroids and complete-graph embeddings on surfaces

نویسندگان

  • Jürgen Bokowski
  • Tomaz Pisanski
چکیده

We provide a link between topological graph theory and pseudoline arrangements from the theory of oriented matroids. We investigate and generalize a function f that assigns to each simple pseudoline arrangement with an even number of elements a pair of complete-graph embeddings on a surface. Each element of the pair keeps the information of the oriented matroid we started with. We call a simple pseudoline arrangement triangular, when the cells in the cell decomposition of the projective plane are 2-colorable and when one color class of cells consists of triangles only. Precisely for triangular pseudoline arrangements, one element of the image pair of f is a triangular complete-graph embedding on a surface. We obtain all triangular complete-graph embeddings on surfaces this way, when we extend the definition of triangular complete pseudoline arrangements in a natural way to that of triangular curve arrangements on surfaces in which each pair of curves has a point in common where they cross. Thus Ringel’s results on the triangular complete-graph embeddings can be interpreted as results on curve arrangements on surfaces. Furthermore, we establish the relationship between 2-colorable curve arrangements and Petrie dual maps. A data structure, called intersection pattern is provided for the study of curve arrangements on surfaces. Finally we show that an orientable surface of genus g admits a complete curve arrangement with at most 2g+ 1 curves in contrast to the non-orientable surface where the number of curves is not bounded. © 2006 Elsevier Inc. All rights reserved. E-mail addresses: [email protected] (J. Bokowski), [email protected] (T. Pisanski). 1 Joint position at the Primorska Institute of Science and Technology, University of Primorska, Koper, Slovenia. Part of the research was conducted while the author was Neil R. Grabois Visiting Professor of Mathematics at Colgate University. The research was supported in part by a grant from Ministrstvo za znanost in tehnologijo Republike Slovenije. 0097-3165/$ – see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.jcta.2006.06.012 2 J. Bokowski, T. Pisanski / Journal of Combinatorial Theory, Series A 114 (2007) 1–19

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Embeddings of K9 Are Triple Linked

We use the theory of oriented matroids to show that any linear embedding of K9, the complete graph on nine vertices, contains a non-split link with three components.

متن کامل

Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers

We show that no minimal vertex triangulation of a closed, connected, orientable 2-manifold of genus 6 admits a polyhedral embedding in R. We also provide examples of minimal vertex triangulations of closed, connected, orientable 2-manifolds of genus 5 that do not admit any polyhedral embeddings. We construct a new infinite family of non-realizable triangulations of surfaces. These results were ...

متن کامل

Triangular embeddings of complete graphs from graceful labellings of paths

We show that to each graceful labelling of a path on 2s + 1 vertices, s ≥ 2, there corresponds a current assignment on a 3-valent graph which generates at least 22s cyclic oriented triangular embeddings of a complete graph on 12s + 7 vertices. We also show that in this correspondence, two distinct graceful labellings never give isomorphic oriented embeddings. Since the number of graceful labell...

متن کامل

Structural properties of fuzzy graphs

Matroids are important combinatorial structures and connect close-lywith graphs. Matroids and graphs were all generalized to fuzzysetting respectively. This paper tries to study  connections betweenfuzzy matroids and fuzzy graphs. For a given fuzzy graph, we firstinduce a sequence of matroids  from a sequence of crisp graph, i.e.,cuts of the fuzzy graph. A fuzzy matroid, named graph fuzzy matro...

متن کامل

Note on inseparability graphs of matroids having exactly one class of orientations

The inseparability graph of an oriented matroid is an invariant of its class of orientations. When an orientable matroid has exactly one class of orientations the inseparability graph of all its orientations is in fact determined by its non-oriented underlying matroid. From this point of view it is natural to ask if inseparability graphs can be used to characterize matroids which have exactly o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 114  شماره 

صفحات  -

تاریخ انتشار 2007